
Information-theoretic inflectional classification

Descriptions of inflection class systems take many forms, depending on the level of documentation
of the language, the theoretical preferences of the author and the goals of the classification. Traditional
descriptions usually distinguish a small number of broad classes, with less common patterns seen as
deviating from these classes. At the other end of the spectrum, various attempts at making sense of the
structure of inflection systems presuppose a classification into fine-grained micro-classes that exhaus-
tively partition the set of lexemes (see Stump and Finkel’s (2013) plat).

In other words, a system of macro-classes can be conceived as exhibiting maximal heterogeneity
between classes, and a system of micro-classes as displaying maximal internal homogeneity. The two
types of classifications can be reconciled by assuming a hierarchically organised system of classes, where
macro-classes are seen as groupings of micro-classes (Dressler and Thornton, 1996). Although there
are various ways of designing such hierarchies, we limit ourselves here to tree-shaped hierarchies with
monotonous inheritance of inflectional properties.

Inflectional classifications are often used to reason about the typology of inflection systems. For
such reasoning to be meaningful, it is crucial that the classifications defined for different languages be
commensurable. Unfortunately, the way linguists define inflection classes (be they broad classes or
micro-classes) is the result of many abitrary choices often driven by traditional views about the language
at hand — sometimes even views about another better studied language. Existing classifications for
different languages may therefore not be commensurable. This arbitrariness is often partly controlled by
relying on combinations of heuristics, notably those guiding segmentation choices. Indeed, whether two
lexemes should be taken as belonging to the same class is deduced from the fact that they use the same
affixal exponents in the same paradigm cells. However there is no consensus as to the exact boundary
between stem allomorphy and affixal exponence. As a result, many nontrivially different classifications
are equally possible.

One way of addressing this issue is by defining quantitative measures to compare competing descrip-
tions of the same morphological system. Sagot and Walther (2011) have designed and implemented such
a measure, based on the information-theoretic notion of Description Length (hereafter DL; Rissanen,
1984). Despite its usefulness, this approach suffers from relying on the manual development of the de-
scriptions to be compared, and not being able to guarantee that the optimal description with respect to
the measure has been found. Moreover, what ‘optimal’ means heavily depends on the measure.

Finding ways of automatically inferring a system of inflection classes from the set of inflected forms
found in a large lexicon is therefore an appealing alternative. This requires a measure for assessing
the inflectional similarity between lexemes. At least three strategies may be envisioned: compute a
global similarity measure between paradigms, using, for instance, compression distance (Brown and
Evans, 2012); for each lexeme, segment all its forms into stems and exponents independently of other
lexemes, and base the similarity measure on the resulting segmented forms (Lee and Goldsmith, 2013);
or compare, across lexemes, patterns of alternations between pairs of forms in the paradigm (Bonami,
2014).

In this presentation we will compare different strategies implementing two such systematised heuris-
tics. These strategies have several features in common. First, they both take as input unsegmented surface
forms, without relying on an a priori segmentation or any kind of morphological analysis. Second, fol-
lowing Bonami (2014), they both rely on alternation patterns between paradigm cells. This is because
such an approach strikes a balance between fully unsupervised learning and the practice of descriptive
linguists.

The first strategy applies agglomerative average linkage clustering1 (Sokal and Michener, 1958),
using the Hamming distance between vectors of patterns of alternation as the dissimilarity metric. This
strategy has at least two advantages: (i) It clearly implements the notion of an inflectional micro-class
as a class of lexemes with a distance of 0 (compare Brown and Evans, 2012); (ii) on French data, it

1Also known as Unweighted Pair Group Method with Arithmetic Mean or UPGMA.



produces a classification that is remarkably close to the traditional one, with 1st and 2nd conjugation
verbs forming clear clusters, and 3rd conjugation verbs scattering around these two main classes.

At each step, such an algorithm merges the two most similar clusters, until all lexemes belong to a
unique cluster. Its drawback is that it performs successive local optimisations and relies on a measure
which is only relevant for identifying similar behaviours. As a result, the first merge operations, at the
bottom of the resulting tree, are more reliable than further ones. Moreover, there is no obvious way
to evaluate at which point merging decisions become detrimental to the system (e.g., to locate macro-
classes).

This was the motivation for designing and implementing a second strategy. Reminiscent of Sagot and
Walther’s (2011) work, we rely on DL to define this second measure. The intuition is that an inventory
of inflection classes is better than another one if it can serve as the basis for a more economic description
of the inflectional system at hand. The notion of DL provides a theoretically grounded way to assess
the economy of such a description. The DL of a description relying on a one-class-for-all inventory
corresponds to an extensive description of the data and is not very economical. Splitting this unique class
into two usually yields a decrease in DL of the corresponding description. This decrease is maximal if
the way lexemes are distributed into the two classes optimally captures relevant generalisations. Further
splits can then be performed until the DL can not be decreased any more.

In our case, we define the DL of a morphological description as a sum of three terms: (i) the lexicon’s
description length, which is the number of bits necessary to encode the mapping between each lexeme
and its class; (ii) the grammar’s DL, which is the number of bits necessary to define the list of patterns
available for each group and each pair of cells. It constitutes a pressure towards heterogeneity between
clusters, as each pattern found in two distinct clusters has to be repeated, thus increasing the DL; (iii) the
residual uncertainty, which is is the number of bits necessary to encode the mapping of each lexeme to
its pattern given the lexicon and the grammar. This constitutes a pressure towards homogeneity within
clusters, as each differing pattern for a same cell in the cluster will add uncertainty. The number of bits
is 0 when a cluster has exactly one pattern for each pair of cells.

This measure has the particular advantage of being able to express the quality of a description, and
therefore that of an inventory of inflection classes. In a bottom-up algorithm, it provides a way of seeing
at which points merging classes does not yield any further improvement. This could allow us to identify
macro-classes. But this measure is more computationnally expensive than pairwise distances, and the
development of an efficient implementation is still ongoing.

We implemented a less complex greedy top-down approach based on an appromixation of the DL as
defined above. This algorithm begins with only one cluster. At each step, it successively attempts to split
each cluster in two, as follows: first, it randomly splits the cluster in two equally sized clusters; second,
it moves lexemes from one of these two clusters to the other, performing the optimal move as far as DL
is concerned, until no DL decrease is possible.

In our talk, we will compare the results of our efforts on datasets from various languages, including
English, French, and European Portuguese. We will describe our ongoing work on the implementation
of an efficient bottom-up clustering algorithm with DL, and discuss our results using this variety of
approach for inferring hierarchies of inflection classes, and more generally for contributing to a better
understanding of the underpinnings of the notion of inflection class.
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